论文标题

Box2Seg:3D点云的学习语义,并带有框级监督

Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level Supervision

论文作者

Liu, Yan, Hu, Qingyong, Lei, Yinjie, Xu, Kai, Li, Jonathan, Guo, Yulan

论文摘要

在文献中,从非结构化的3D点云中学习密集的点语义,尽管一个现实的问题,但在文献中已经探讨了。尽管现有的弱监督方法只能使用一小部分点级注释有效地学习语义,但我们发现香草边界框级注释对于大规模3D点云的语义分割也有用。在本文中,我们介绍了一种称为Box2Seg的神经体系结构,以通过边界框级监督学习3D点云的点级语义。我们方法的关键是通过探索每个边界内部和外部的几何和拓扑结构来生成准确的伪标签。具体而言,基于注意力的自我训练(AST)技术和点类激活映射(PCAM)用于估计伪标记。该网络已通过伪标签对网络进行了进一步的培训和完善。在包括S3DIS和SCANNET在内的两个大规模基准测试的实验证明了该方法的竞争性能。特别是,建议的网络可以接受便宜甚至是现成的框级注释和子云级别标签的培训。

Learning dense point-wise semantics from unstructured 3D point clouds with fewer labels, although a realistic problem, has been under-explored in literature. While existing weakly supervised methods can effectively learn semantics with only a small fraction of point-level annotations, we find that the vanilla bounding box-level annotation is also informative for semantic segmentation of large-scale 3D point clouds. In this paper, we introduce a neural architecture, termed Box2Seg, to learn point-level semantics of 3D point clouds with bounding box-level supervision. The key to our approach is to generate accurate pseudo labels by exploring the geometric and topological structure inside and outside each bounding box. Specifically, an attention-based self-training (AST) technique and Point Class Activation Mapping (PCAM) are utilized to estimate pseudo-labels. The network is further trained and refined with pseudo labels. Experiments on two large-scale benchmarks including S3DIS and ScanNet demonstrate the competitive performance of the proposed method. In particular, the proposed network can be trained with cheap, or even off-the-shelf bounding box-level annotations and subcloud-level tags.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源