论文标题
通过视觉变压器从合成中学习:火山动荡检测的情况
Learning from Synthetic InSAR with Vision Transformers: The case of volcanic unrest detection
论文作者
论文摘要
在喷发前的火山动乱的早期迹象以干涉合成孔径雷达(INSAR)数据的地面变形形式的形式对于评估火山危害至关重要。在这项工作中,我们将其视为Insar图像的二进制分类问题,并提出了一种新颖的深度学习方法,该方法利用了丰富的合成生成的干涉图来训练在实际干涉图中表现出色的质量分类器。该问题的性质不平衡,较少的正面样本较少,再加上缺乏带有标记的Insar数据的策划数据库,为常规深度学习体系结构设定了一项具有挑战性的任务。我们为域适应性提出了一个新的框架,其中我们从与视觉变压器的合成数据中学习了类原型。我们报告的检测准确性等于在大型测试集中进行火山动乱检测的最高报告的准确性。此外,我们通过使用我们的模型从一个未标记的真实Insar数据集中生成的伪标签来学习学习表示形式和原型空间之间的新的,非线性的投影,从而构建了这些知识。这导致了新的最新状态,在我们的测试套装中,精度为97.1%。我们通过在未标记的真实Insar数据集上训练一个简单的RESNET-18卷积神经网络来证明我们的方法的鲁棒性,并使用我们的顶级变压器 - 预型模型生成的伪标签。我们的方法可以在不需要手动标记任何样本的情况下进行显着改善性能,从而为在各种遥感应用程序中进一步开发合成Insar数据的道路开放。
The detection of early signs of volcanic unrest preceding an eruption, in the form of ground deformation in Interferometric Synthetic Aperture Radar (InSAR) data is critical for assessing volcanic hazard. In this work we treat this as a binary classification problem of InSAR images, and propose a novel deep learning methodology that exploits a rich source of synthetically generated interferograms to train quality classifiers that perform equally well in real interferograms. The imbalanced nature of the problem, with orders of magnitude fewer positive samples, coupled with the lack of a curated database with labeled InSAR data, sets a challenging task for conventional deep learning architectures. We propose a new framework for domain adaptation, in which we learn class prototypes from synthetic data with vision transformers. We report detection accuracy that amounts to the highest reported accuracy on a large test set for volcanic unrest detection. Moreover, we built upon this knowledge by learning a new, non-linear, projection between the learnt representations and prototype space, using pseudo labels produced by our model from an unlabeled real InSAR dataset. This leads to the new state of the art with 97.1% accuracy on our test set. We demonstrate the robustness of our approach by training a simple ResNet-18 Convolutional Neural Network on the unlabeled real InSAR dataset with pseudo-labels generated from our top transformer-prototype model. Our methodology provides a significant improvement in performance without the need of manually labeling any sample, opening the road for further exploitation of synthetic InSAR data in various remote sensing applications.