论文标题
关于Gehring-Hayman定理的一些评论
Some remarks on the Gehring-Hayman theorem
论文作者
论文摘要
在本文中,我们从Gromov边界和统一性的角度提供了Gehring-Hayman定理的新特征。我们还确定均匀空间的关键指数是双曲线空间的统一空间,模型空间$ \ mathbb {m}^κ_n$的截面曲率$κ<0 $,尺寸为$ n \ geq 2 $和多重纤维填充物。
In this paper we provide new characterizations of the Gehring-Hayman theorem from the point of view of Gromov boundary and uniformity. We also determine the critical exponents for the uniformized space to be a uniform space in the case of the hyperbolic spaces, the model spaces $\mathbb{M}^κ_n$ of the sectional curvature $κ<0$ with the dimension $n \geq 2$ and hyperbolic fillings.