论文标题

极端事件之后的新波动性演变模型

New volatility evolution model after extreme events

论文作者

Cai, Mei-Ling, Chen, Zhang-HangJian, Li, Sai-Ping, Xiong, Xiong, Zhang, Wei, Yang, Ming-Yuan, Ren, Fei

论文摘要

在本文中,我们提出了一个新的动力学模型,以研究极端事件后股票市场指数的两阶段波动性演变,并发现极端事件后的波动率在初始阶段延伸了指数型衰减,并通过使用高频分钟数据在以后的时间衰减。内源性和外源性事件后波动性进化行为的经验研究进一步证明了我们新模型的描述能力。为了进一步探讨波动性演变的潜在机制,我们介绍了信息假设(SAIH)的顺序到达以及分布假设(MDH)的混合物来测试两阶段假设,并发现投资者从未知状态转变为第一阶段的不知情状态,并随后在第二阶段统治了知情的投资者。测试结果为我们的新模型的有效性和相关参数的拟合值提供了支持解释。

In this paper, we propose a new dynamical model to study the two-stage volatility evolution of stock market index after extreme events, and find that the volatility after extreme events follows a stretched exponential decay in the initial stage and becomes a power law decay at later times by using high frequency minute data. Empirical study of the evolutionary behaviors of volatility after endogenous and exogenous events further demonstrates the descriptive power of our new model. To further explore the underlying mechanisms of volatility evolution, we introduce the sequential arrival of information hypothesis (SAIH) and the mixture of distribution hypothesis (MDH) to test the two-stage assumption, and find that investors transform from the uninformed state to the informed state in the first stage and informed investors subsequently dominate in the second stage. The testing results offer a supporting explanation for the validity of our new model and the fitted values of relevant parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源