论文标题

具有幂律奇异性的多元三角分析函数的转移定理

A transfer theorem for multivariate Delta-analytic functions with a power-law singularity

论文作者

Chen, Linxiao

论文摘要

本文提出了Flajolet和Odlyzko的转移定理的多元概括。与单变量版本类似,该定理假定$ a(z_1,\ ldots,z_d)$的$δ$分析(定义的坐标),在独特的主导性奇点$(ρ_1,\ ldots,ρ_d,ρ_d)\ in(prrantate in(primate prrance)上,并允许一个人,允许一个人,允许一个人,允许一个人,允许一个人,允许一个人,允许一个人,允许一个人,允许一个人,允许一个人,允许一个人,允许一个prranise trrans trrans trrist trrans trrans trrans, $ a(z_1,\ ldots,z_d)$(ρ_1,\ ldots,ρ_d)$的渐近扩展为其泰勒系数的相应渐近扩展$ a__ {n_1,\ ldots,n_d} $。我们处理$ a(z_1,\ ldots,z_d)$的渐近扩展的情况,仅包含幂律类型术语,而索引$ n_1,\ ldots,n_d $在某些多面有拉伸的对角度​​限制中趋向于无限。 $ a_ {n_1,\ ldots,n_d} $的结果渐近扩展是表格\ begin {equation*} i(λ_1,\ ldots,λ_d)\ cdot n_0^{ - θ}}} { - θ}} \ cd_11^_d_1^n_1}^{ - cd_1^{ - \ end {equation*}其中$(λ_1,\ ldots,λ_d)\ in(0,\ infty)^d $是$(n_1,\ ldots,n_d)$的对角线限制的方向向量$θ\ in \ Mathbb r $和$ i:(0,\ infty)^d \ to \ mathbb c $由$ a $的渐近扩展确定。

This paper presents a multivariate generalization of Flajolet and Odlyzko's transfer theorem. Similarly to the univariate version, the theorem assumes $Δ$-analyticity (defined coordinate-wise) of a function $A(z_1,\ldots,z_d)$ at a unique dominant singularity $(ρ_1,\ldots,ρ_d) \in (\mathbb C_*)^d$, and allows one to translate, on a term-by-term basis, an asymptotic expansion of $A(z_1,\ldots,z_d)$ around $(ρ_1,\ldots,ρ_d)$ into a corresponding asymptotic expansion of its Taylor coefficients $a_{n_1,\ldots,n_d}$. We treat the case where the asymptotic expansion of $A(z_1,\ldots,z_d)$ contains only power-law type terms, and where the indices $n_1,\ldots,n_d$ tend to infinity in some polynomially stretched diagonal limit. The resulting asymptotic expansion of $a_{n_1,\ldots,n_d}$ is a sum of terms of the form \begin{equation*} I(λ_1,\ldots,λ_d) \cdot n_0^{-Θ} \cdot ρ_1^{-n_1}\cdots ρ_d^{-n_d}, \end{equation*} where $(λ_1,\ldots,λ_d) \in (0,\infty)^d$ is the direction vector of the stretched diagonal limit for $(n_1,\ldots,n_d)$, the parameter $n_0$ tends to $\infty$ at similar speed as $n_1,\ldots,n_d$, while $Θ\in \mathbb R$ and $I:(0,\infty)^d \to \mathbb C$ are determined by the asymptotic expansion of $A$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源