论文标题
在CFT的尺寸间隙的上限上
On Upper Bounds in Dimension Gaps of CFT's
论文作者
论文摘要
我们认为CFT是由于介绍内部流形的奇异性而产生的。我们专注于具有内部空间的全息模型,包括来自CY和任意球员的静脉菌。在所有这些情况下,我们都表明,对于双CFT中第一个非平凡的自旋2操作员的共形尺寸,都有一个通用的上限(仅取决于时空维度),并且对于所有CFT的全息倍率双重和构想。
We consider CFT's arising from branes probing singularities of internal manifolds. We focus on holographic models with internal space including arbtirary Sasaki-Einstein manifolds coming from CY as well as arbitrary sphere quotients. In all these cases we show that there is a universal upper bound (depending only on the spacetime dimension) for the conformal dimension of the first non-trivial spin 2 operator in the dual CFT and a minimal diameter (in AdS units) for the internal space of the holographic dual and conjecture it holds for all CFT's.