论文标题

基于语法的方法,用于将可视化分类法应用于交互日志

A Grammar-Based Approach for Applying Visualization Taxonomies to Interaction Logs

论文作者

Gathani, Sneha, Monadjemi, Shayan, Ottley, Alvitta, Battle, Leilani

论文摘要

研究人员收集了大量的用户交互数据,目的是将用户的工作流和行为映射到其更高级别的动机,直觉和目标。尽管视觉分析社区提出了许多分类法来促进此映射过程,但没有将这些现有理论应用于用户交互日志的正式方法。本文旨在通过使分类法对互动日志分析更具起作用来弥合可视化任务分类法与交互日志数据之间的差距。为了实现这一目标,我们利用人们通过互动和语言表达自己表达自己的结构相似之处,通过将现有理论作为常规语法进行重新设计。我们将相互作用表示为常规语法中的终端,类似于单个单词在语言中的作用,而相互作用或非终端的模式则是这些终端上的正则表达式,以捕获通用语言模式。为了展示我们的方法,我们为七个可视化分类法生成常规语法,并开发代码将它们应用于三个交互日志数据集。在分析结果时,我们发现低水平(即终端)的现有分类法在表达多个相互作用日志数据集和高级(即正则表达式)的分类学方面表现出不同的结果。根据我们的发现,我们建议为可视化界的新研究方向增强现有分类法,开发新的分类法,并构建更好的交互日志记录过程,以促进用户行为分类法的数据驱动的开发。

Researchers collect large amounts of user interaction data with the goal of mapping user's workflows and behaviors to their higher-level motivations, intuitions, and goals. Although the visual analytics community has proposed numerous taxonomies to facilitate this mapping process, no formal methods exist for systematically applying these existing theories to user interaction logs. This paper seeks to bridge the gap between visualization task taxonomies and interaction log data by making the taxonomies more actionable for interaction log analysis. To achieve this, we leverage structural parallels between how people express themselves through interactions and language by reformulating existing theories as regular grammars. We represent interactions as terminals within a regular grammar, similar to the role of individual words in a language, and patterns of interactions or non-terminals as regular expressions over these terminals to capture common language patterns. To demonstrate our approach, we generate regular grammars for seven visualization taxonomies and develop code to apply them to three interaction log datasets. In analyzing our results, we find that existing taxonomies at the low-level (i.e., terminals) show mixed results in expressing multiple interaction log datasets, and taxonomies at the high-level (i.e., regular expressions) have limited expressiveness, due to primarily two challenges: inconsistencies in interaction log dataset granularity and structure, and under-expressiveness of certain terminals. Based on our findings, we suggest new research directions for the visualization community for augmenting existing taxonomies, developing new ones, and building better interaction log recording processes to facilitate the data-driven development of user behavior taxonomies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源