论文标题

深度学习辅助6G无线网络:革命性PHY体系结构的全面调查

Deep Learning-Aided 6G Wireless Networks: A Comprehensive Survey of Revolutionary PHY Architectures

论文作者

Ozpoyraz, Burak, Dogukan, A. Tugberk, Gevez, Yarkin, Altun, Ufuk, Basar, Ertugrul

论文摘要

深度学习(DL)已证明了其在计算机视觉,自然语言处理和语音识别等各个领域的前所未有的成功,其强大的代表能力和易于计算。随着我们向具有6G无线网络的彻底智能社会,新的应用程序和用例一直在出现,对下一代无线通信的要求很严重。因此,最近的研究集中在满足这些严格需求并克服现有基于模型技术的缺陷方面的DL方法的潜力。本文的主要目的是揭示基于DL的物理层(PHY)方法领域的最新进步,以为6G的迷人应用铺平道路。特别是,我们将注意力集中在四个有前途的PHY概念上,预见到了下一代通信,即大规模多输入多输出(MIMO)系统,复杂的多载体(MC)波形设计,可重新配置的智能表面(RIS)授权的智能表面(RIS)授权的通信以及Phy Security。我们研究了基于DL的技术的最新发展,提供与最新方法的比较,并为将来的方向介绍综合指南。我们还概述了DL的基本概念,以及众所周知的DL技术的理论背景。此外,本文提供了许多DL技术的编程示例,并通过共享用户友好的代码码头来实现基于DL的MIMO,这对感兴趣的读者可能很有用。

Deep learning (DL) has proven its unprecedented success in diverse fields such as computer vision, natural language processing, and speech recognition by its strong representation ability and ease of computation. As we move forward to a thoroughly intelligent society with 6G wireless networks, new applications and use-cases have been emerging with stringent requirements for next-generation wireless communications. Therefore, recent studies have focused on the potential of DL approaches in satisfying these rigorous needs and overcoming the deficiencies of existing model-based techniques. The main objective of this article is to unveil the state-of-the-art advancements in the field of DL-based physical layer (PHY) methods to pave the way for fascinating applications of 6G. In particular, we have focused our attention on four promising PHY concepts foreseen to dominate next-generation communications, namely massive multiple-input multiple-output (MIMO) systems, sophisticated multi-carrier (MC) waveform designs, reconfigurable intelligent surface (RIS)-empowered communications, and PHY security. We examine up-to-date developments in DL-based techniques, provide comparisons with state-of-the-art methods, and introduce a comprehensive guide for future directions. We also present an overview of the underlying concepts of DL, along with the theoretical background of well-known DL techniques. Furthermore, this article provides programming examples for a number of DL techniques and the implementation of a DL-based MIMO by sharing user-friendly code snippets, which might be useful for interested readers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源