论文标题
广义多边形A的表达A:飞机,四边形和六角形
Epimorphisms of generalized polygons A: The planes, quadrangles and hexagons
论文作者
论文摘要
受Skornjakov-Hughes-pasini [9,7,8]定理的启发,以及在最近的论文中出现的问题[13],我们开始研究具有较厚的广义M-GON的表达,并靶向稀薄的广义M-GON。在该系列的第一部分中,当多边形是有限的时,我们将Case M = 3、4和6分类。然后,我们证明了无限情况大不相同,并且构建了与有限情况有着强烈偏差的示例。还获得了许多一般结构定理。我们介绍了局部有限生成的广义多边形和局部有限的广义多边形的理论。
Inspired by a theorem by Skornjakov-Hughes-Pasini [9, 7, 8] and a problem which turned up in our recent paper [13], we start a study of epimorphisms with source a thick generalized m-gon and target a thin generalized m-gon. In this first part of the series, we classify the cases m = 3, 4 and 6 when the polygons are finite. Then we show that the infinite case is very different, and construct examples which strongly deviate from the finite case. A number of general structure theorems are also obtained. We introduce the theory of locally finitely generated generalized polygons and locally finitely chained generalized polygons along the way.