论文标题
Miccai 2021的Hecktor挑战概述:PET/CT图像中的自动头颈部肿瘤分割和结果预测
Overview of the HECKTOR Challenge at MICCAI 2021: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT Images
论文作者
论文摘要
本文概述了第二版的头颈肿瘤(Hecktor)挑战,该挑战是在第24届国际医学图像计算和计算机辅助干预措施(MICCAI)2021的卫星事件中进行的。挑战由三个任务组成,由与头颈部癌症患者的PET/CT图像自动分析相关的三个任务(HEAD和NEAKEN)(H)和颈部癌症(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)(H)和n&n)。任务1是FDG-PET/CT图像中H&N原发性总肿瘤体积(GTVT)的自动分割。任务2是从同一FDG-PET/CT的自动预测无进展生存期(PFS)。最后,任务3与任务2相同,并提供了向参与者提供的地面真相GTVT注释。从六个中心收集了数据,总共有325张图像,分为224个培训和101个测试案例。重要的参与强调了对挑战的兴趣,其中103个注册团队和448项结果提交。最佳方法在第一个任务中获得了0.7591的骰子相似性系数(DSC),在任务2和3中获得的一致性指数(C-Index)分别为0.7196和0.6978。在所有任务中,都发现该方法的简单性是确保概括性能的关键。任务2和3中PFS预测性能的比较表明,提供GTVT轮廓对于获得最佳结果至关重要,这表明可以使用全自动方法。这有可能消除了GTVT轮廓的需求,开放了可再现和大规模放射线学研究的途径,包括数千个潜在受试者。
This paper presents an overview of the second edition of the HEad and neCK TumOR (HECKTOR) challenge, organized as a satellite event of the 24th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2021. The challenge is composed of three tasks related to the automatic analysis of PET/CT images for patients with Head and Neck cancer (H&N), focusing on the oropharynx region. Task 1 is the automatic segmentation of H&N primary Gross Tumor Volume (GTVt) in FDG-PET/CT images. Task 2 is the automatic prediction of Progression Free Survival (PFS) from the same FDG-PET/CT. Finally, Task 3 is the same as Task 2 with ground truth GTVt annotations provided to the participants. The data were collected from six centers for a total of 325 images, split into 224 training and 101 testing cases. The interest in the challenge was highlighted by the important participation with 103 registered teams and 448 result submissions. The best methods obtained a Dice Similarity Coefficient (DSC) of 0.7591 in the first task, and a Concordance index (C-index) of 0.7196 and 0.6978 in Tasks 2 and 3, respectively. In all tasks, simplicity of the approach was found to be key to ensure generalization performance. The comparison of the PFS prediction performance in Tasks 2 and 3 suggests that providing the GTVt contour was not crucial to achieve best results, which indicates that fully automatic methods can be used. This potentially obviates the need for GTVt contouring, opening avenues for reproducible and large scale radiomics studies including thousands potential subjects.