论文标题

扰动和固定点的条件概率

Conditional Probability of Derangements and Fixed Points

论文作者

Gutmann, Sam, Mixer, Mark, Morrow, Steven

论文摘要

$ s_n $中的随机排列是一种危险的概率,众所周知是$ \ displaystyle \ sum \ limits_ {j = 0}^n(-1)^j \ frac {1} {j!} $。在本文中,我们考虑了$(k+1)^{st} $点固定的条件概率,鉴于第一个$ k $点中没有固定点。我们证明,当$ n \ neq 3 $和$ k \ neq 1 $时,此概率是$ k $和$ n $的降低功能。此外,证明了这种条件概率由$ \ frac {1} {n} - \ frac {k} {n^2(n -1)} $近似。鉴于第一个$ k $点中的$(k+1)^{st} $点是固定的,也获得了类似的结果。

The probability that a random permutation in $S_n$ is a derangement is well known to be $\displaystyle\sum\limits_{j=0}^n (-1)^j \frac{1}{j!}$. In this paper, we consider the conditional probability that the $(k+1)^{st}$ point is fixed, given there are no fixed points in the first $k$ points. We prove that when $n \neq 3$ and $k \neq 1$, this probability is a decreasing function of both $k$ and $n$. Furthermore, it is proved that this conditional probability is well approximated by $\frac{1}{n} - \frac{k}{n^2(n-1)}$. Similar results are also obtained about the more general conditional probability that the $(k+1)^{st}$ point is fixed, given that there are exactly $d$ fixed points in the first $k$ points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源