论文标题

通过矩阵掩盖降低差异隐私的噪声水平

Reducing Noise Level in Differential Privacy through Matrix Masking

论文作者

Ding, A. Adam, Wu, Samuel S., Miao, Guanhong, Chen, Shigang

论文摘要

近年来,已广泛采用差异隐私计划来解决数据隐私保护问题。我们提出了一种新的高斯方案,结合了另一种称为随机正交矩阵掩模的数据保护技术,以更有效地实现$(\ varepsilon,δ)$ - 差异隐私(DP)。我们证明,额外的矩阵掩蔽可显着降低高斯方案中所需的噪声方差速率,以实现$(\ varepsilon,δ) - 在大数据设置中$ dp。具体而言,当$ \ varepsilon \ to 0 $,$δ\至0 $,样本大小$ n $超过$(n-p)= o(ln(1/δ)$的数字$ p $ p $),所需的附加噪声差异可实现$(\ varepsilon,δ)$ -dp $(\ vareps $/dp)$(ln $ o(1)至$ o(1/\ varepsilon)$。随着噪声的添加得多,由此产生的差异隐私保护伪数据集可以更准确地推断,因此可以显着提高差异隐私应用程序的应用范围。

Differential privacy schemes have been widely adopted in recent years to address issues of data privacy protection. We propose a new Gaussian scheme combining with another data protection technique, called random orthogonal matrix masking, to achieve $(\varepsilon, δ)$-differential privacy (DP) more efficiently. We prove that the additional matrix masking significantly reduces the rate of noise variance required in the Gaussian scheme to achieve $(\varepsilon, δ)-$DP in big data setting. Specifically, when $\varepsilon \to 0$, $δ\to 0$, and the sample size $n$ exceeds the number $p$ of attributes by $(n-p)=O(ln(1/δ))$, the required additive noise variance to achieve $(\varepsilon, δ)$-DP is reduced from $O(ln(1/δ)/\varepsilon^2)$ to $O(1/\varepsilon)$. With much less noise added, the resulting differential privacy protected pseudo data sets allow much more accurate inferences, thus can significantly improve the scope of application for differential privacy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源