论文标题

曲折道路理论

Twistor Theory of Dancing Paths

论文作者

Dunajski, Maciej

论文摘要

给定表面$ \ MATHCAL {U} $上的路径几何形状,我们在四个manifold上构建了一个因果结构,该结构是$ \ MATHCAL {U} $的非属性对(点,路径)的配置空间。当且仅当$ \ Mathcal {u} $是一个真实的投影平面时,该因果结构对应于共形结构,而路径是行。我们举例说明了对称六元的因果结构的示例,该结构在$ {\ rm sl}(2,{\ mathbb r})上对应于$ {\ mathbb r})$ - 不变的投影结构,其中路径是以原点为中心的面积$π$的椭圆形。我们还将在七维流形上讨论与射击平面上非事件对(点,圆锥)相对应的七维歧管上的因果结构。

Given a path geometry on a surface $\mathcal{U}$, we construct a causal structure on a four-manifold which is the configuration space of non-incident pairs (point, path) on $\mathcal{U}$. This causal structure corresponds to a conformal structure if and only if $\mathcal{U}$ is a real projective plane, and the paths are lines. We give the example of the causal structure given by a symmetric sextic, which corresponds on an ${\rm SL}(2,{\mathbb R})$-invariant projective structure where the paths are ellipses of area $π$ centred at the origin. We shall also discuss a causal structure on a seven-dimensional manifold corresponding to non-incident pairs (point, conic) on a projective plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源