论文标题
Ginibre集合中复杂间距比的近似公式
Approximation formula for complex spacing ratios in the Ginibre ensemble
论文作者
论文摘要
最近,Sá,Ribeiro和Prosen引入了复杂的间距比,以分析非富米系统中的特征值相关性。目前,这些比率在较大的系统大小的限制中尚无分析结果。我们得出了一个随机矩阵理论的Ginibre通用类别类别的近似公式,该矩阵理论将指数置于无限基质大小的极限。我们还为分布的时刻提供了此限制的结果。
Recently, Sá, Ribeiro and Prosen introduced complex spacing ratios to analyze eigenvalue correlations in non-Hermitian systems. At present there are no analytical results for the probability distribution of these ratios in the limit of large system size. We derive an approximation formula for the Ginibre universality class of random matrix theory which converges exponentially fast to the limit of infinite matrix size. We also give results for moments of the distribution in this limit.