论文标题

用无环查询重写:注意你的头

Rewriting with Acyclic Queries: Mind Your Head

论文作者

Geck, Gaetano, Keppeler, Jens, Schwentick, Thomas, Spinrath, Christopher

论文摘要

论文研究了重写问题,即决策问题,是否对于给定的查询$ q $和设置的$ \ mathcal {v} $的视图,有一个连接性查询$ q'$ q'$ q of $ \ nathcal {v} $等于$ q $,对于$ q $,对于查询,查询和/或求解的情况,请参见和求解。它表明,如果$ q $本身是无环的,则如果有任何重写,则存在无环的重写。一个类似的陈述还具有自由连续的无环,分层和Q层次的查询。关于重写问题的复杂性,本文确定了可拖动和(可能是)棘手的重写问题变体之间的边界:对于有界的ARITE的模式,即使$ Q $既有$ q $又是$ \ vients $ \ \ \ \ Mathcal {v} $ is acycyclic is acycyclic ancycarlical或herierarcart。但是,如果视图是自由连续的无环(即,简而言之,它们的身体是(i)无环,并且(ii)如果将其头部作为附加原子添加)。

The paper studies the rewriting problem, that is, the decision problem whether, for a given conjunctive query $Q$ and a set $\mathcal{V}$ of views, there is a conjunctive query $Q'$ over $\mathcal{V}$ that is equivalent to $Q$, for cases where the query, the views, and/or the desired rewriting are acyclic or even more restricted. It shows that, if $Q$ itself is acyclic, an acyclic rewriting exists if there is any rewriting. An analogous statement also holds for free-connex acyclic, hierarchical, and q-hierarchical queries. Regarding the complexity of the rewriting problem, the paper identifies a border between tractable and (presumably) intractable variants of the rewriting problem: for schemas of bounded arity, the acyclic rewriting problem is NP-hard, even if both $Q$ and the views in $\mathcal{V}$ are acyclic or hierarchical. However, it becomes tractable if the views are free-connex acyclic (i.e., in a nutshell, their body is (i) acyclic and (ii) remains acyclic if their head is added as an additional atom).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源