论文标题
1847年明智的小行星的热特性
Thermal Properties of 1847 WISE-observed Asteroids
论文作者
论文摘要
我们提出了1,847种小行星的新型热物理模型(TPM)拟合,衍生了热惯性,直径和键以及可见的几何反照率。我们使用宽场红外调查Explorer获得的热通量测量值(Wise; Wright等,2010; Mainzer等人,2011年)在其完全低温期,当时12 $ $ m(W3)和22 $ $ $ M(W4)频段均可使用。我们从小行星模型数据库中采用了形状模型和自旋信息,来自反转技术(Damit; URECH et al.2010),并通过LightCurve倒置得出新的形状模型,并将明智的光度计与现有的Damit Lightcurves结合在一起。当我们以最可靠的形状模型和热通量测量结果将样品限制在小行星中时,我们发现与最近的研究大致一致的热惯性关系。我们适用于直径$ d $(km)和热惯性$γ$(J m $^{ - 2} $ s $ s $ s $^{ - 0.5} $ k $^{ - 1} $)归一化为1 au,并与形式$ \ log \ log [γ] =α+β\ log [d] $ 0. $ and 0. 0. 0. 0. 0. 0. 0. 0. 0666. $β= -0.467 \ pm 0.044 $仅用于我们的样品,$α= 2.509 \ pm 0.017 $和$β= -0.352 \ pm 0.012 $,与其他文献估计结合时。由于我们的样品中要考虑的慢速旋转器,我们几乎没有发现旋转期与热惯性之间任何相关性的证据。尽管我们大多数衍生的热惯性的大量不确定性仅使我们能够确定热惯性和其他物理参数之间的广泛趋势,但我们可以预期,高质量的热通量测量值和小行星形状模型的高度增长显着增加,并通过即将进行的红外和宽场调查,从而实现更高精确的未来的热态模型。
We present new thermophysical model (TPM) fits of 1,847 asteroids, deriving thermal inertia, diameter, and Bond and visible geometric albedo. We use thermal flux measurements obtained by the Wide-field Infrared Survey Explorer (WISE; Wright et al. 2010; Mainzer et al. 2011) during its fully cryogenic phase, when both the 12$μ$m (W3) and 22$μ$m (W4) bands were available. We take shape models and spin information from the Database of Asteroid Models from Inversion Techniques (DAMIT; Ďurech et al. 2010) and derive new shape models through lightcurve inversion and combining WISE photometry with existing DAMIT lightcurves. When we limit our sample to the asteroids with the most reliable shape models and thermal flux measurements, we find broadly consistent thermal inertia relations with recent studies. We apply fits to the diameters $D$ (km) and thermal inertia $Γ$ (J m$^{-2}$ s$^{-0.5}$ K$^{-1}$) normalized to 1 au with a linear relation of the form $\log[Γ]=α+β\log[D]$, where we find $α= 2.667 \pm 0.059$ and $β= -0.467 \pm 0.044$ for our sample alone and $α= 2.509 \pm 0.017$ and $β= -0.352 \pm 0.012$ when combined with other literature estimates. We find little evidence of any correlation between rotation period and thermal inertia, owing to the small number of slow rotators to consider in our sample. While the large uncertainties on the majority of our derived thermal inertia only allow us to identify broad trends between thermal inertia and other physical parameters, we can expect a significant increase in high-quality thermal flux measurements and asteroid shape models with upcoming infrared and wide-field surveys, enabling even more thermophysical modeling of higher precision in the future.