论文标题

视频快照压缩成像的自适应深PNP算法

Adaptive Deep PnP Algorithm for Video Snapshot Compressive Imaging

论文作者

Wu, Zongliang, Yang, Chengshuai, Su, Xiongfei, Yuan, Xin

论文摘要

视频快照压缩成像(SCI)是一种捕获高速视频的有前途的技术,它将成像速度从探测器转换为掩模调节,并且只需要单个测量即可捕获多个帧。从测量中重建高速帧的算法在SCI中起着至关重要的作用。在本文中,我们考虑了有希望的重建算法框架,即插件(PNP),这对于与其他深度学习网络进行比较的编码过程非常灵活。现有PNP算法的一个缺点是,他们使用预先训练的Denoising网络作为插入的先验,而网络的培训数据可能与实际应用程序中的任务不同。为此,在这项工作中,我们提出了在线PNP算法,该算法可以自适应地更新PNP迭代中的网络参数;这使得denoising网络更适用于SCI重建中所需的数据。此外,对于彩色视频成像,需要从拜耳图案中恢复RGB框架或在摄像机管道中命名的Demosaicing。为了应对这一挑战,我们设计了一个两阶段的重建框架,以优化这两个耦合不足的问题,并在事先引入深度示波器,专门针对视频示波器,而不是过去的工作,而不是使用单个图像示例性示例网络。模拟和实际数据集的广泛结果验证了我们自适应深度PNP算法的优越性。

Video Snapshot compressive imaging (SCI) is a promising technique to capture high-speed videos, which transforms the imaging speed from the detector to mask modulating and only needs a single measurement to capture multiple frames. The algorithm to reconstruct high-speed frames from the measurement plays a vital role in SCI. In this paper, we consider the promising reconstruction algorithm framework, namely plug-and-play (PnP), which is flexible to the encoding process comparing with other deep learning networks. One drawback of existing PnP algorithms is that they use a pre-trained denoising network as a plugged prior while the training data of the network might be different from the task in real applications. Towards this end, in this work, we propose the online PnP algorithm which can adaptively update the network's parameters within the PnP iteration; this makes the denoising network more applicable to the desired data in the SCI reconstruction. Furthermore, for color video imaging, RGB frames need to be recovered from Bayer pattern or named demosaicing in the camera pipeline. To address this challenge, we design a two-stage reconstruction framework to optimize these two coupled ill-posed problems and introduce a deep demosaicing prior specifically for video demosaicing which does not have much past works instead of using single image demosaicing networks. Extensive results on both simulation and real datasets verify the superiority of our adaptive deep PnP algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源