论文标题

概率质量映射和神经评分估计

Probabilistic Mass Mapping with Neural Score Estimation

论文作者

Remy, Benjamin, Lanusse, Francois, Jeffrey, Niall, Liu, Jia, Starck, Jean-Luc, Osato, Ken, Schrabback, Tim

论文摘要

弱透镜质量映射是访问天空中暗物质的完整分布的有用工具,但是由于固有的星系椭圆形和有限的磁场/缺少数据,因此,暗物质图的恢复构成了一个具有挑战性的逆问题。我们引入了一种新颖的方法,可以有效地对弱透镜质量映射问题的高维贝叶斯后部进行有效采样,并依靠模拟来定义完全非高斯之前的先验。我们旨在证明该方法在模拟中的准确性,然后继续将其应用于HST/ACS Cosmos场的质量重建。提出的方法结合了贝叶斯统计学,分析理论的要素以及基于神经评分匹配的最新生成模型。这种方法使我们能够执行以下操作:1)充分利用分析宇宙学理论来限制解决方案的2PT统计数据。 2)从宇宙学模拟中学习此分析先验和完整模拟之间的任何差异。 3)从问题的全部贝叶斯后部获取样品,以进行鲁棒的不确定性定量。我们在$κ$ tng模拟上演示了方法,发现后部在根平方的错误和皮尔逊相关方面都显着超过了先前的方法(kaiser-squires,wiener滤波器,稀疏率)。我们进一步说明了后验的后逆相关值与簇的SNR之间的密切相关性,以人为引入磁场的群体之间的密切相关性。最后,我们将该方法应用于HST/ACS Cosmos场的重建,并产生迄今为止该字段的最高质量收敛图。

Weak lensing mass-mapping is a useful tool to access the full distribution of dark matter on the sky, but because of intrinsic galaxy ellipticies and finite fields/missing data, the recovery of dark matter maps constitutes a challenging ill-posed inverse problem. We introduce a novel methodology allowing for efficient sampling of the high-dimensional Bayesian posterior of the weak lensing mass-mapping problem, and relying on simulations for defining a fully non-Gaussian prior. We aim to demonstrate the accuracy of the method on simulations, and then proceed to applying it to the mass reconstruction of the HST/ACS COSMOS field. The proposed methodology combines elements of Bayesian statistics, analytic theory, and a recent class of Deep Generative Models based on Neural Score Matching. This approach allows us to do the following: 1) Make full use of analytic cosmological theory to constrain the 2pt statistics of the solution. 2) Learn from cosmological simulations any differences between this analytic prior and full simulations. 3) Obtain samples from the full Bayesian posterior of the problem for robust Uncertainty Quantification. We demonstrate the method on the $κ$TNG simulations and find that the posterior mean significantly outperfoms previous methods (Kaiser-Squires, Wiener filter, Sparsity priors) both on root-mean-square error and in terms of the Pearson correlation. We further illustrate the interpretability of the recovered posterior by establishing a close correlation between posterior convergence values and SNR of clusters artificially introduced into a field. Finally, we apply the method to the reconstruction of the HST/ACS COSMOS field and yield the highest quality convergence map of this field to date.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源