论文标题
阳米尔斯在紧凑型表面上的大n极限II:Makeenko-Migdal方程和平面主场
Large N limit of the Yang-Mills measure on compact surfaces II: Makeenko-Migdal equations and planar master field
论文作者
论文摘要
本文考虑了Wilson回路的较大N限制,用于二维欧几里德阳米尔米尔斯在所有可定向的紧凑型表面上测量更大或相等的属,其中一个经典紧凑型基质lie组给出了结构组。我们显示了它们在圆环上的所有循环中的收敛性,并给出了其他表面的部分结果支持的猜想。
This paper considers the large N limit of Wilson loops for the two-dimensional Euclidean Yang-Mills measure on all orientable compact surfaces of genus larger or equal to one, with a structure group given by a classical compact matrix Lie group. We show their convergence for all loops on the torus and give a conjecture supported by partial results for other surfaces.