论文标题

在物理供应机器学习模型中,有效培训转移映射

Efficient Training of Transfer Mapping in Physics-Infused Machine Learning Models of UAV Acoustic Field

论文作者

Iqbal, Rayhaan, Behjat, Amir, Adlakha, Revant, Callanan, Jesse, Nouh, Mostafa, Chowdhury, Souma

论文摘要

与纯数据驱动的近似模型相比,物理注入物理学的机器学习(PIML)体系结构旨在将机器学习与计算高效,低效率(部分)物理模型集成,从而提高了可推广性,易估量和噪声的鲁棒性。最近,同一作者报道了一种新的PIML体系结构,称为机会性物理挖掘传输映射体系结构或OPTMA,该构建结构或使用转移神经网络将原始输入转移到潜在特征中;然后,部分物理模型使用潜在功能来生成与高保真输出尽可能接近的最终输出。尽管没有梯度的求解器和带有监督学习的后传播曾被用来训练Optma,但该方法在计算上效率低下,具有挑战性,可以推广到不同问题或流行的ML实现。本文旨在通过在流行的ML框架Pytorch中通过张量进行张量来将部分物理模型注入神经网络中,以减轻这些问题。这样的描述自然允许部分物理模型的自动差异(AD),从而实现了有效的背部传播方法来训练转移网络。通过将其应用于建模由悬停无人驾驶飞机(UAV)创建的声压场的问题,可以证明使用AD升级的OPTMA架构(OPTMA-NET)的好处。此问题的地面真相数据是从室内无人机噪声测量设置获得的。在这里,部分物理模型基于由任意数量的声学单极源产生的声压波的干扰。案例研究表明,OPTMA-NET提供的概括性能接近,外推性能是纯数据驱动模型给出的概括4倍。

Physics-Infused Machine Learning (PIML) architectures aim at integrating machine learning with computationally-efficient, low-fidelity (partial) physics models, leading to improved generalizability, extrapolability, and robustness to noise, compared to pure data-driven approximation models. Recently a new PIML architecture was reported by the same authors, known as Opportunistic Physics-mining Transfer Mapping Architecture or OPTMA, which transfers the original inputs into latent features using a transfer neural network; the partial physics model then uses the latent features to generate the final output that is as close as possible to the high-fidelity output. While gradient-free solvers and back-propagation with supervised learning was earlier used to train OPTMA, that approach is computationally inefficient and challenging to generalize across different problems or popular ML implementations. This paper aims to alleviate these issues by infusing the partial physics model inside the neural network, as described via tensors in the popular ML framework, PyTorch. Such a description also naturally allows auto-differentiation (AD) of the partial physics model, thereby enabling the use of efficient back-propagation methods to train the transfer network. The benefits of the upgraded OPTMA architecture with AD (OPTMA-Net) is demonstrated by applying it to the problem of modeling the sound pressure field created by a hovering unmanned aerial vehicle (UAV). Ground truth data for this problem was obtained from an indoor UAV noise measurement setup. Here, the partial physics model is based on the interference of acoustic pressure waves generated by an arbitrary number of acoustic monopole sources. Case studies show that OPTMA-Net provides generalization performance close to, and extrapolation performance that is 4 times better than, those given by a pure data-driven model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源