论文标题

大规模互联网流量中的新现象

New Phenomena in Large-Scale Internet Traffic

论文作者

Kepner, Jeremy, Cho, Kenjiro, Claffy, KC, Gadepally, Vijay, McGuire, Sarah, Milechin, Lauren, Arcand, William, Bestor, David, Bergeron, William, Byun, Chansup, Hubbell, Matthew, Houle, Michael, Jones, Michael, Prout, Andrew, Reuther, Albert, Rosa, Antonio, Samsi, Siddharth, Yee, Charles, Michaleas, Peter

论文摘要

互联网正在改变我们的社会,需要对互联网流量进行定量了解。我们的团队收集并策划了最大的公开互联网流量数据集。对MIT SuperCloud中10,000个处理器对500亿数据包进行的分析揭示了一种新现象:原本看不见的叶子节点和在互联网流量中孤立的链接的重要性。我们的分析进一步表明,两参数修改的Zipf-Mandelbrot分布精确地描述了移动样本窗口的各种源/目的地统计信息,范围从100 {,} 000到100 {,} 000 {,} 000 {,} 000 {,} 000数据包,而不是年龄和大陆的集合。测量的模型参数区分了不同的网络流,模型叶参数与不同基础网络拓扑中流量的比例密切相关。

The Internet is transforming our society, necessitating a quantitative understanding of Internet traffic. Our team collects and curates the largest publicly available Internet traffic data sets. An analysis of 50 billion packets using 10,000 processors in the MIT SuperCloud reveals a new phenomenon: the importance of otherwise unseen leaf nodes and isolated links in Internet traffic. Our analysis further shows that a two-parameter modified Zipf-Mandelbrot distribution accurately describes a wide variety of source/destination statistics on moving sample windows ranging from 100{,}000 to 100{,}000{,}000 packets over collections that span years and continents. The measured model parameters distinguish different network streams, and the model leaf parameter strongly correlates with the fraction of the traffic in different underlying network topologies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源