论文标题
BANACH代数的第二双BSE-Properies
BSE-Properties of Second Dual of Banach Algebras
论文作者
论文摘要
让$ a $为可交换的半杂志arens常规Unital Banach代数。评估了Banach代数$ a $的BSE-Property及其第二个双重的相关性。发现并批准,如果$ a $是bse-algebra,那么$ a^{**} $。相反的相关性将在某些条件下保持。评估和检查了Banach代数的BSE-NORM特性及其第二个双重性质的相关性。据透露,如果$ a $是$ a^{**} $的换向arens a a^$ a^{**} $的$ a $ a $ a $和$ a^{**} $是bse-norm代数。
Let $A$ be a commutative semisimple Arens regular unital Banach algebra. The correlation between the BSE-property of the Banach algebra $A$ and its second duals are assessed. It is found and approved that if $A$ is a BSE-algebra, then so is $A^{**}$. The opposite correlation will hold in certain conditions. The correlation of the BSE-norm property of the Banach algebra and its second dual are assessed and examined. It is revealed that, if $A$ is a commutative Arens regular unital Banach algebra where $A^{**}$ is semisimple, then, $A$ and $A^{**}$ are BSE-norm algebra.