论文标题

在单层代数和Segre扩展

On Serre dimension of monoid algebras and Segre extensions

论文作者

Keshari, Manoj Kumar, Mathew, Maria Ann

论文摘要

让$ r $成为尺寸$ d $和$ m $的noetherian戒指,是$ r $ r $的$ d $ $ d $,$ nocutative $,$ nocelative $。然后$ s $ - $ dim(r [m])\ leq max \ {1,dim(r [m])-1 \} = max \ {1,d+r-1 \} $。此外,$,$,我们定义一类单型$ \ {\ Mathfrak {m} _n \} _ {n \ geq 1} $,以便如果$ m \ in \ mathfrak {m mathfrak {m} _n $ is eminoral $,eminoral $,emmoral $,$ s $ s $ s $ s $(r [m] $ dim(r [m]) n \ leq r $。作为一个应用程序,我们证明,对于Segre Extension $ S_ {Mn}(r)$ of $ r,$ $ $ s $ - $ dim(s_ {mn}(r))\ leq dim(s_ {mn}(mn}(r)) - \ big [\ frac {m+n-1} {min \ {m,n \}}} \ big] $。

Let $R$ be a commutative noetherian ring of dimension $d$ and $M$ be a commutative$,$ cancellative$,$ torsion-free monoid of rank $r$. Then $S$-$dim(R[M]) \leq max\{1, dim(R[M])-1 \} = max\{1, d+r-1 \}$. Further$,$ we define a class of monoids $\{\mathfrak{M}_n\}_{n \geq 1}$ such that if $M \in \mathfrak{M}_n$ is seminormal$,$ then $S$-$dim(R[M]) \leq dim(R[M]) - n= d+r-n,$ where $1 \leq n \leq r$. As an application, we prove that for the Segre extension $S_{mn}(R)$ over $R,$ $S$-$dim(S_{mn}(R)) \leq dim(S_{mn}(R)) - \Big[\frac{m+n-1}{min\{m,n\}}\Big] = d+m+n-1 - \Big[\frac{m+n-1}{min\{m,n\}}\Big]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源