论文标题

Oeljeklaus-Toma歧管的公制和共同体学特性

On metric and cohomological properties of Oeljeklaus-Toma manifolds

论文作者

Angella, Danielle, Dubickas, Arturas, Otiman, Alexandra, Stelzig, Jonas

论文摘要

我们研究了Oeljeklaus-Toma歧管的度量和共同体特性。特别是,我们描述了差异形式的双重复合物及其胸骨的共同体的结构,并以数字理论和共同体学术语来表征多licliclated(又名SKT)指标的存在。此外,我们证明他们不承认任何Hermitian度量$ω$,因此$ \ partial \ poartline {\ partial}Ω

We study metric and cohomological properties of Oeljeklaus-Toma manifolds. In particular, we describe the structure of the double complex of differential forms and its Bott-Chern cohomology and we characterize the existence of pluriclosed (aka SKT) metrics in number-theoretic and cohomological terms. Moreover, we prove they do not admit any Hermitian metric $ω$ such that $\partial \overline{\partial} ω^k=0$, for $2 \leq k \leq n-2$ and we give explicit formulas for the Dolbeault cohomology of Oeljeklaus-Toma manifolds admitting pluriclosed metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源