论文标题
关于Abelian计划的高斯 - 曼宁连接的注释
A note on the Gauss-Manin connection for abelian schemes
论文作者
论文摘要
我们在通用矢量扩展上研究ABELIAN方案$ a $ a $的特征零的差异表格,并在$ a^\ natural $上推导了$ d $ - 格罗普方案结构的新结构。特别是,这给出了$ a^\ natural $上的全球代数差分形式的$ a $ a $ a $ a $ a $ a $ a $ a $ a $ anin连接的相当简单的描述。关键成分是由于Coleman和Laumon而导致的$ a^{\ natural} $的连贯的共同体学计算。
We study differential forms on the universal vector extension $A^\natural$ of an abelian scheme $A$ in characteristic zero, and derive a new construction of the $D$-group scheme structure on $A^\natural$. This gives, in particular, a rather simple description of the Gauss--Manin connection on the de Rham cohomology of $A$ in terms of global algebraic differential forms on $A^\natural$. The key ingredient is the computation of the coherent cohomology of $A^{\natural}$, due to Coleman and Laumon.