论文标题
具有学识渊博的关系特征的可区分规则归纳
Differentiable Rule Induction with Learned Relational Features
论文作者
论文摘要
基于规则的决策模型由于其可解释性而具有吸引力。但是,现有的规则诱导方法通常会导致长期且因此不容易解释的规则模型。这个问题通常可以归因于缺乏适当表达性的词汇,即在决策模型中用作文字的相关谓词。大多数现有的规则归纳算法都假定了预定义的文字,从而自然地将文字的定义从规则学习阶段解开。相比之下,我们提出了关系规则网络(R2N),这是一种神经体系结构,学习了代表数值输入特征之间线性关系以及使用它们的规则的文字关系。这种方法通过直接以端到端的方式将字面学习与规则学习联系起来,为提高诱发决策模型的表现力打开了大门。在基准任务上,我们表明这些学识渊博的文字足够简单,可以保持可解释性,但提高了预测准确性,并提供了与最先进的规则归纳算法相比更简洁的规则。
Rule-based decision models are attractive due to their interpretability. However, existing rule induction methods often result in long and consequently less interpretable rule models. This problem can often be attributed to the lack of appropriately expressive vocabulary, i.e., relevant predicates used as literals in the decision model. Most existing rule induction algorithms presume pre-defined literals, naturally decoupling the definition of the literals from the rule learning phase. In contrast, we propose the Relational Rule Network (R2N), a neural architecture that learns literals that represent a linear relationship among numerical input features along with the rules that use them. This approach opens the door to increasing the expressiveness of induced decision models by coupling literal learning directly with rule learning in an end-to-end differentiable fashion. On benchmark tasks, we show that these learned literals are simple enough to retain interpretability, yet improve prediction accuracy and provide sets of rules that are more concise compared to state-of-the-art rule induction algorithms.