论文标题

球形二维玻璃气的散射理论和方程

Scattering theory and equation of state of a spherical two-dimensional Bose gas

论文作者

Tononi, A.

论文摘要

我们分析了限制在球形表面上的相同骨颗粒的散射问题。在低散射能和半径比愈合长度大得多的半径上,我们以S波散射长度表示接触相互作用强度。通过这种关系,我们能够使球形玻色气体的零点能量正规化并获得其状态方程,其中包括由于球体的有限半径而导致的校正,并与平盘相吻合导致无限 - 拉迪乌斯限制。我们还提供了系统的超流体密度的微观推导,从而再现了先前工作中假定的结果。我们的结果与与二维气泡捕获的玻色核冷凝物建模正在进行的微重力实验有关。

We analyze the scattering problem of identical bosonic particles confined on a spherical surface. At low scattering energies and for a radius much larger than the healing length, we express the contact interaction strength in terms of the s-wave scattering length. Adopting this relation, we are then able to regularize the zero-point energy of the spherical Bose gas and to obtain its equation of state, which includes the corrections due to the finite radius of the sphere and coincides with the flat-case result in the infinite-radius limit. We also provide a microscopic derivation of the superfluid density of the system, reproducing a result postulated in a previous work. Our results are relevant for modeling the ongoing microgravity experiments with two-dimensional bubble-trapped Bose-Einstein condensates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源