论文标题
重复的特征性sturmian单词的指数,其斜率是二次不合理的
The exponent of repetition of the characteristic Sturmian word whose slope is a quadratic irrational
论文作者
论文摘要
对于一个无限的单词$ x $,Bugeaud和Kim引入了一个数量$ \ mathrm {rep}(x)$,称为$ x $重复的指数。我们证明$ \ mathrm {rep}(x)= \ mathrm {rep}(y)$持有sturmian word $ x $和每个后缀$ y $的$ x $。令$ c $为斜率$θ$的特征性sturmian单词。当$θ$是二次非理性时,给出了$ \ mathrm {rep}(c)$的公式。此公式表明,如果$ \ mathrm {rep}(c)= \ mathrm {rep}(c')$如果$ c'$是特征性的sturmian单词,其斜率是二次非理性的,等于$θ$。
For an infinite word $x$, Bugeaud and Kim introduced a quantity $\mathrm{rep}(x)$ called the exponent of repetition of $x$. We prove that $\mathrm{rep}(x) = \mathrm{rep}(y)$ holds for a Sturmian word $x$ and every suffix $y$ of $x$. Let $c$ be the characteristic Sturmian word of slope $θ$. When $θ$ is a quadratic irrational, a formula of $\mathrm{rep}(c)$ is given. This formula shows that $\mathrm{rep}(c) = \mathrm{rep}(c')$ if $c'$ is the characteristic Sturmian word whose slope is a quadratic irrational equivalent to $θ$.