论文标题
在距离定型的cayley图上,广义双环类
On distance-regular Cayley graphs of generalized dicyclic groups
论文作者
论文摘要
令$ g $为具有身份$ 1 $的广义二环集团。 $ g \ setminus \ {1 \} $的倒数封闭子集$ s $如果$ \ langle s \ rangle = g $,则称为最小值,并且在s $中存在一些$ s \,这样$ \ langle s \ langle s \ s \ setMinus \ \ \ {在本文中,我们表征了距离定期的cayley图$ \ mathrm {cay}(g,s)$ $ g $的条件下$ s $很少。
Let $G$ be a generalized dicyclic group with identity $1$. An inverse closed subset $S$ of $G\setminus\{1\}$ is called minimal if $\langle S\rangle=G$ and there exists some $s\in S$ such that $\langle S\setminus\{s,s^{-1}\} \rangle\neq G$. In this paper, we characterize distance-regular Cayley graphs $\mathrm{Cay}(G,S)$ of $G$ under the condition that $S$ is minimal.