论文标题

了解Covid-19对流动性的影响:一种社区参与的方法

Understanding COVID-19 Effects on Mobility: A Community-Engaged Approach

论文作者

Sharma, Arun, Farhadloo, Majid, Li, Yan, Kulkarni, Aditya, Gupta, Jayant, Shekhar, Shashi

论文摘要

给定汇总的移动设备数据,目标是了解Covid-19政策干预对移动性的影响。由于重要的社会用例,例如安全地重新开放经济,因此这个问题至关重要。挑战包括理解和解释对决策者感兴趣的问题,干预措施的选择和时间的跨义工变异性,较大的数据量以及未知的采样偏见。相关工作探讨了19009对旅行距离,在家度过的时间以及不同兴趣点的访客人数的影响。但是,许多政策制定者对长期访问高风险业务类别感兴趣,并了解空间选择偏见以解释摘要报告。我们提供一个实体关系图,系统体系结构和实现,以支持长期访问的查询,此外,除了精细的分辨率设备计数图以了解空间偏见。我们与决策者密切合作,以得出系统要求并评估系统组件,摘要报告和可视化。

Given aggregated mobile device data, the goal is to understand the impact of COVID-19 policy interventions on mobility. This problem is vital due to important societal use cases, such as safely reopening the economy. Challenges include understanding and interpreting questions of interest to policymakers, cross-jurisdictional variability in choice and time of interventions, the large data volume, and unknown sampling bias. The related work has explored the COVID-19 impact on travel distance, time spent at home, and the number of visitors at different points of interest. However, many policymakers are interested in long-duration visits to high-risk business categories and understanding the spatial selection bias to interpret summary reports. We provide an Entity Relationship diagram, system architecture, and implementation to support queries on long-duration visits in addition to fine resolution device count maps to understand spatial bias. We closely collaborated with policymakers to derive the system requirements and evaluate the system components, the summary reports, and visualizations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源