论文标题

用于运行光伏能量的集合模拟的可扩展解决方案

A Scalable Solution for Running Ensemble Simulations for Photovoltaic Energy

论文作者

Hu, Weiming, Cervone, Guido, Turilli, Matteo, Merzky, Andre, Jha, Shantenu

论文摘要

本章提出并提供了有关用于太阳能生产的集合模拟的可扩展解决方案的深入讨论。生成一个预测合奏在计算上是昂贵的。但是,在模拟集合的帮助下,可以通过天气预报模型的单一确定性运行来生成预测集合。然后使用天气合奏模拟11个10 kW光伏太阳能系统,以研究在各种面板配置和天气条件下的模拟不确定性。该计算工作流已部署到NCAR超级计算机夏安(Cheyenne),拥有7,000多个内核。 结果表明,春季和夏季通常与较大的模拟不确定性有关。根据不断变化的天气条件,根据其个人性能优化面板配置可以提高模拟精度超过12%。这项工作还显示了如何根据地理位置优化面板配置。

This chapter proposes and provides an in-depth discussion of a scalable solution for running ensemble simulation for solar energy production. Generating a forecast ensemble is computationally expensive. But with the help of Analog Ensemble, forecast ensembles can be generated with a single deterministic run of a weather forecast model. Weather ensembles are then used to simulate 11 10 KW photovoltaic solar power systems to study the simulation uncertainty under a wide range of panel configuration and weather conditions. This computational workflow has been deployed onto the NCAR supercomputer, Cheyenne, with more than 7,000 cores. Results show that, spring and summer are typically associated with a larger simulation uncertainty. Optimizing the panel configuration based on their individual performance under changing weather conditions can improve the simulation accuracy by more than 12%. This work also shows how panel configuration can be optimized based on geographic locations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源