论文标题
Muse-Vae:多尺度VAE,用于环境意识的长期轨迹预测
MUSE-VAE: Multi-Scale VAE for Environment-Aware Long Term Trajectory Prediction
论文作者
论文摘要
在复杂的场景中,准确的长期轨迹预测,其中多种代理(例如行人或车辆)相互互动,而试图实现各种各样且通常是未知目标的环境,这是一个具有挑战性的随机预测问题。在这项工作中,我们提出了Muse,这是一种基于一系列有条件VAE的新概率建模框架,该框架使用粗到精细的多因素预测架构来解决长期,不确定的轨迹预测任务。在其宏观阶段,该模型学习了两个关键因素的联合像素空间表示,即基础环境和代理运动,以预测长期和短期运动目标。在他们的条件下,微观阶段学习了一个细粒的时空表示,以预测单个试剂轨迹。在两个阶段的VAE骨架使得在两个粒度水平上的关节不确定性都可以自然地说明。结果,与当前的最新面积相比,缪斯提供了多样化和同时更准确的预测。我们通过对Nuscenes和SDD基准的一系列实验以及PFSD(一种新的合成数据集)进行了全面的实验来证明这些断言,这是一个新的合成数据集,这挑战了模型在复杂的代理环境相互作用方案上的预测能力。
Accurate long-term trajectory prediction in complex scenes, where multiple agents (e.g., pedestrians or vehicles) interact with each other and the environment while attempting to accomplish diverse and often unknown goals, is a challenging stochastic forecasting problem. In this work, we propose MUSE, a new probabilistic modeling framework based on a cascade of Conditional VAEs, which tackles the long-term, uncertain trajectory prediction task using a coarse-to-fine multi-factor forecasting architecture. In its Macro stage, the model learns a joint pixel-space representation of two key factors, the underlying environment and the agent movements, to predict the long and short-term motion goals. Conditioned on them, the Micro stage learns a fine-grained spatio-temporal representation for the prediction of individual agent trajectories. The VAE backbones across the two stages make it possible to naturally account for the joint uncertainty at both levels of granularity. As a result, MUSE offers diverse and simultaneously more accurate predictions compared to the current state-of-the-art. We demonstrate these assertions through a comprehensive set of experiments on nuScenes and SDD benchmarks as well as PFSD, a new synthetic dataset, which challenges the forecasting ability of models on complex agent-environment interaction scenarios.