论文标题
对称单体类别的免费紧凑闭合
The free compact closure of a symmetric monoidal category
论文作者
论文摘要
我们通过在其对象中自由添加伴随,从任何对称单体类别中构建一个紧凑的封闭类别。完成的形态定义为原始类别的对象和形态注释的字符串图。对称的单体类别通过忠实的单体函数嵌入其完成中,但与非对称情况相反,这种嵌入并不完整。我们通过INT构造的建筑因素,该因素将产生另一种自由结构:对称单体类别的自由追踪单体类别。
We construct a compact closed category out of any symmetric monoidal category by freely adding adjoints to its objects. The morphisms of the completion are defined as string diagrams annotated by objects and morphisms from the original category. The symmetric monoidal category embeds via a faithful monoidal functor into its completion, but in contrast to the non-symmetric case, this embedding is not full. Our construction factors through the Int construction, which yields another free construction: the free traced monoidal category on a symmetric monoidal category.