论文标题

耦合支持张量机分类用于多模式神经成像数据

Coupled Support Tensor Machine Classification for Multimodal Neuroimaging Data

论文作者

Peide, Li, Sofuoglu, Seyyid Emre, Maiti, Tapabrata, Aviyente, Selin

论文摘要

多模式数据出现在各种应用中,其中从多个传感器和不同的成像方式中获取了有关相同现象的信息。从多模式数据中学习在机器学习和统计研究中引起了极大的兴趣,因为这提供了捕获方式之间互补信息的可能性。多模式建模有助于解释异质数据源之间的相互依存关系,发现可能无法从单一模式中获得的新见解并改善决策。最近,已经引入了耦合基质量分解以进行多模式数据融合以共同估计潜在因素并确定潜在因素之间的复杂相互依存关系。但是,大多数先前关于耦合矩阵调节因素的工作都集中在无监督的学习上,并且使用共同估计的潜在因素在监督学习方面几乎没有工作。本文考虑了多模式张量数据分类问题。提出了基于从高级耦合矩阵张量分解(ACMTF)共同估算的潜在因素建立的耦合支撑张量机(C-STM)。 C-STM将单个和共享的潜在因子与多个内核相结合,并估计了耦合矩阵张量数据的最大细边分类器。 C-STM的分类风险显示会融合到最佳贝叶斯风险,从而使其在统计上保持一致。通过模拟研究以及同时进行EEG-FMRI分析来验证C-STM。经验证据表明,与传统的单模分类器相比,C-STM可以利用来自多个来源的信息,并提供更好的分类性能。

Multimodal data arise in various applications where information about the same phenomenon is acquired from multiple sensors and across different imaging modalities. Learning from multimodal data is of great interest in machine learning and statistics research as this offers the possibility of capturing complementary information among modalities. Multimodal modeling helps to explain the interdependence between heterogeneous data sources, discovers new insights that may not be available from a single modality, and improves decision-making. Recently, coupled matrix-tensor factorization has been introduced for multimodal data fusion to jointly estimate latent factors and identify complex interdependence among the latent factors. However, most of the prior work on coupled matrix-tensor factors focuses on unsupervised learning and there is little work on supervised learning using the jointly estimated latent factors. This paper considers the multimodal tensor data classification problem. A Coupled Support Tensor Machine (C-STM) built upon the latent factors jointly estimated from the Advanced Coupled Matrix Tensor Factorization (ACMTF) is proposed. C-STM combines individual and shared latent factors with multiple kernels and estimates a maximal-margin classifier for coupled matrix tensor data. The classification risk of C-STM is shown to converge to the optimal Bayes risk, making it a statistically consistent rule. C-STM is validated through simulation studies as well as a simultaneous EEG-fMRI analysis. The empirical evidence shows that C-STM can utilize information from multiple sources and provide a better classification performance than traditional single-mode classifiers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源