论文标题

减少基座中ETG传输的模型

Reduced models for ETG transport in the pedestal

论文作者

Hatch, David R., Michoski, Craig, Kuang, Dongyang, Chapman-Oplopoiou, Ben, Curie, Max, Halfmoon, Michael, Hassan, Ehab, Kotschenreuther, Mike, Mahajan, Swadesh M., Merlo, Gabriele, Pueschel, M. J., Walker, Justin, Stephens, Cole D.

论文摘要

本文报告了基座中电子温度梯度(ETG)驱动转运的减少模型的发展。模型开发是通过一组61个非线性陀螺仪模拟来启用模型开发的,在广泛的实验场景中,从基座中获取的输入参数。模拟数据已在新的数据库中合并,用于陀螺仪仿真数据,多尺度陀螺仪数据库(MGKDB),从而促进了分析。建模方法可以被认为是标准的准线性混合长度程序的概括。参数ETA,密度与温度梯度尺度长度的比率是制定有效饱和规则的关键参数。使用单个订单 - 拟合系数,该模型的RMS误差为15%。还描述了ETG粒子通量的类似模型。我们还提出了简单的代数表达式,用于通过算法告知符号回归的传输。

This paper reports on the development of reduced models for electron temperature gradient (ETG) driven transport in the pedestal. Model development is enabled by a set of 61 nonlinear gyrokinetic simulations with input parameters taken from the pedestals in a broad range of experimental scenarios. The simulation data has been consolidated in a new database for gyrokinetic simulation data, the Multiscale Gyrokinetic Database (MGKDB), facilitating the analysis. The modeling approach may be considered a generalization of the standard quasilinear mixing length procedure. The parameter eta, the ratio of the density to temperature gradient scale length, emerges as the key parameter for formulating an effective saturation rule. With a single order-unity fitting coefficient, the model achieves an RMS error of 15%. A similar model for ETG particle flux is also described. We also present simple algebraic expressions for the transport informed by an algorithm for symbolic regression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源