论文标题

迈向深度观察:对人工智能技术的系统调查,以通过超声图像监视胎儿

Towards deep observation: A systematic survey on artificial intelligence techniques to monitor fetus via Ultrasound Images

论文作者

Alzubaidi, Mahmood, Agus, Marco, Alyafei, Khalid, Althelaya, Khaled A, Shah, Uzair, Abd-Alrazaq, Alaa, Anbar, Mohammed, Makhlouf, Michel, Househ, Mowafa

论文摘要

开发旨在增强胎儿监测的创新信息学方法是生殖医学研究的新领域。已经对人工智能(AI)技术进行了几次评论,以改善妊娠结局。他们的限制是专注于特定数据,例如怀孕期间母亲的护理。这项系统的调查旨在探讨人工智能(AI)如何通过超声(US)图像有助于胎儿生长监测。我们使用了八个医学和计算机科学书目数据库,包括PubMed,Embase,Psycinfo,ScienceDirect,IEEE Explore,ACM Library,Google Scholar和Web of Science。我们检索了2010年至2021年之间发表的研究。从研究中提取的数据是使用叙述方法合成的。在1269项检索研究中,我们包括了107项与调查中与该主题相关的查询的不同研究。我们发现,与3D和4D超声图像相比,2D超声图像更受欢迎(n = 88)(n = 19)。分类是最常用的方法(n = 42),其次是分割(n = 31),与分割(n = 16)集成的分类以及其他其他杂项,例如对象检测,回归和增强学习(n = 18)。怀孕结构域中最常见的区域是胎儿头(n = 43),然后是胎儿(n = 31),胎儿心脏(n = 13),腹部腹部(n = 10),最后是胎儿的脸(n = 10)。在最近的研究中,深度学习技术主要使用(n = 81),其次是机器学习(n = 16),人工神经网络(n = 7)和增强学习(n = 2)。 AI技术在预测胎儿疾病和识别怀孕期间胎儿解剖结构中起着至关重要的作用。需要进行更多的研究来从医生的角度验证这项技术,例如试点研究和对AI及其在医院环境中的应用的随机对照试验。

Developing innovative informatics approaches aimed to enhance fetal monitoring is a burgeoning field of study in reproductive medicine. Several reviews have been conducted regarding Artificial intelligence (AI) techniques to improve pregnancy outcomes. They are limited by focusing on specific data such as mother's care during pregnancy. This systematic survey aims to explore how artificial intelligence (AI) can assist with fetal growth monitoring via Ultrasound (US) image. We used eight medical and computer science bibliographic databases, including PubMed, Embase, PsycINFO, ScienceDirect, IEEE explore, ACM Library, Google Scholar, and the Web of Science. We retrieved studies published between 2010 to 2021. Data extracted from studies were synthesized using a narrative approach. Out of 1269 retrieved studies, we included 107 distinct studies from queries that were relevant to the topic in the survey. We found that 2D ultrasound images were more popular (n=88) than 3D and 4D ultrasound images (n=19). Classification is the most used method (n=42), followed by segmentation (n=31), classification integrated with segmentation (n=16) and other miscellaneous such as object-detection, regression and reinforcement learning (n=18). The most common areas within the pregnancy domain were the fetus head (n=43), then fetus body (n=31), fetus heart (n=13), fetus abdomen (n=10), and lastly the fetus face (n=10). In the most recent studies, deep learning techniques were primarily used (n=81), followed by machine learning (n=16), artificial neural network (n=7), and reinforcement learning (n=2). AI techniques played a crucial role in predicting fetal diseases and identifying fetus anatomy structures during pregnancy. More research is required to validate this technology from a physician's perspective, such as pilot studies and randomized controlled trials on AI and its applications in a hospital setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源