论文标题
增强或超分辨率:基于学习的自适应视频流和客户端视频处理
Enhancement or Super-Resolution: Learning-based Adaptive Video Streaming with Client-Side Video Processing
论文作者
论文摘要
多媒体和通信技术的快速发展导致迫切需要高质量的视频流。但是,在波动的网络条件下,强大的视频流和异质客户计算功能仍然是一个挑战。在本文中,我们考虑了一个启用增强功能的视频流网络,这是在时间变化的无线网络和有限的计算能力下。 “增强”是指客户可以通过图像处理模块提高下载视频片段的质量。我们旨在设计一种联合比特率适应和客户端增强算法,以最大程度地提高体验质量(QOE)。我们将问题提出为马尔可夫决策过程(MDP),并提出了一个基于ENAV的框架(DRL)的深入学习(DRL)。由于视频流质量主要受视频压缩的影响,因此我们证明,视频增强算法的表现优于信噪比和每秒框架的超分辨率算法,这表明在视频流中的客户端处理方案更好。最终,我们实施ENAV并在现实世界带宽轨迹和视频下展示广泛的测试床结果。模拟表明,ENAV能够在与常规ABR流相同的带宽和计算功率条件下提供5%-14%的QoE。
The rapid development of multimedia and communication technology has resulted in an urgent need for high-quality video streaming. However, robust video streaming under fluctuating network conditions and heterogeneous client computing capabilities remains a challenge. In this paper, we consider an enhancement-enabled video streaming network under a time-varying wireless network and limited computation capacity. "Enhancement" means that the client can improve the quality of the downloaded video segments via image processing modules. We aim to design a joint bitrate adaptation and client-side enhancement algorithm toward maximizing the quality of experience (QoE). We formulate the problem as a Markov decision process (MDP) and propose a deep reinforcement learning (DRL)-based framework, named ENAVS. As video streaming quality is mainly affected by video compression, we demonstrate that the video enhancement algorithm outperforms the super-resolution algorithm in terms of signal-to-noise ratio and frames per second, suggesting a better solution for client processing in video streaming. Ultimately, we implement ENAVS and demonstrate extensive testbed results under real-world bandwidth traces and videos. The simulation shows that ENAVS is capable of delivering 5%-14% more QoE under the same bandwidth and computing power conditions as conventional ABR streaming.