论文标题

分子构象比较的等效距离几何误差

Equivalent Distance Geometry Error for Molecular Conformation Comparison

论文作者

Yang, Shuwen, Wen, Tianyu, Li, Ziyao, Song, Guojie

论文摘要

直接从输入分子图生成3D结构的直构构成模型在通过机器学习的各种分子任务中起着重要作用,例如3D-QSAR和药物设计中的虚拟筛选。但是,这些模型中的现有损失功能要么花费过时的时间,要么无法保证优化期间的等效性,这意味着不公平地处理不同的项目,导致局部几何形状较差。因此,我们提出了等效的距离几何误差(边缘),以计算构象之间的差异差异,在构象中,构象几何形状的三种基本因素(即键长,键角和二面角)与某些权重相等地优化。在我们方法的改进版本中,优化的特征是最小化3-HOP内原子对距离的线性变换。广泛的实验表明,与现有的损失功能相比,边缘在同一骨架下的两个任务中有效,有效地表现。

Straight-forward conformation generation models, which generate 3-D structures directly from input molecular graphs, play an important role in various molecular tasks with machine learning, such as 3D-QSAR and virtual screening in drug design. However, existing loss functions in these models either cost overmuch time or fail to guarantee the equivalence during optimization, which means treating different items unfairly, resulting in poor local geometry in generated conformation. So, we propose Equivalent Distance Geometry Error (EDGE) to calculate the differential discrepancy between conformations where the essential factors of three kinds in conformation geometry (i.e. bond lengths, bond angles and dihedral angles) are equivalently optimized with certain weights. And in the improved version of our method, the optimization features minimizing linear transformations of atom-pair distances within 3-hop. Extensive experiments show that, compared with existing loss functions, EDGE performs effectively and efficiently in two tasks under the same backbones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源