论文标题
俄罗斯第一个2G-HTS三轴电缆的计算建模
Computational Modelling of Russia's First 2G-HTS Triaxial Cable
论文作者
论文摘要
在为高压AC系统开发超导电缆时,需要更好地了解三个阶段之间的相互作用。在本文中,特别关注真实电力传输电缆的能量损失,我们利用了麦克斯韦方程的所谓H形成来设计用于超导三轴电缆的2D模型。该模型的主要目的是理解和重现Superox和Vniikp开发的第一个三轴原型电缆上报告的实验观察结果。该计算建模和原型电缆由在三个阶段上排列的4毫米宽度超级胶带的87个磁带组成。将我们的计算结果与通过电气接触方法进行的VNIIKP进行的实验测量结果进行了比较,该方法显示了电缆外相的高度准确性,同时揭示了内部相处的实验测量的技术问题。因此,在与VNIIKP协商时,已经得出结论,对于实际的实验测量,在内部阶段的AC损耗进行了实验,因此必须建立复杂的量热设置。我们的模型仍然能够通过研究时间域中的每个相的磁曲线来对VNIIKP-SUPEROX电缆设计进行独立评估。从这个意义上讲,我们确认电流的不平衡排列和阶段之间的距离肯定会导致没有磁泄漏,因此可以达到电缆电感的足够平衡。
A better understanding of the interaction between three phases is required when developing superconducting cables for high voltage AC systems. With a particular focus on the energy losses of real power transmission cables, in this paper we utilize the so-called H-formulation of Maxwell equations to devise a 2D model for superconducting triaxial cables. The major aim of this model is to comprehend and reproduce the experimental observations reported on the first triaxial prototype cable developed by SuperOx and VNIIKP. The computationally modelled and prototyped cable is made of up to 87 tapes of 4 mm width SuperOx tape arranged across the three phases. Our computational results are compared to the experimental measurements performed by VNIIKP with the electrical contact method, showing a high degree of accuracy over the outer phase of the cable, whilst revealing technical issues with the experimental measurements at the inner phases. Thus, in consultation with VNIIKP it has been concluded that for the actual experimental measurement of the AC losses at the inner phases, and consequently of the overall cable, a sophisticated calorimetric setup must be built. Still our model is capable to provide an independent assessment of the VNIIKP-SuperOx cable design, by investigating the magnetic profiles per phase in the time domain. In this sense, we confirm that the unbalanced arrange of currents and distancing between the phases affirmatively lead to no magnetic leakages, and therefore to an adequate balance of the cabling inductance.