论文标题
腔体和超级增强了拉姆西光谱法
Cavity Sub- and Superradiance Enhanced Ramsey Spectroscopy
论文作者
论文摘要
陷入偶极 - 偶极相互作用的光学晶格中的大型,密集的超冷原子的浓密集合中的拉姆西光谱诱发了偏移和集体超赞的限制,从而限制了其精度和准确性。我们提出了一种新颖的几何形状,该几何形状通过在弱单原子但强大的集体耦合方面操作的光腔,对较低密度的大原子数进行最小的加热,对较低的原子数的加热最小。关键思想是原子的控制集体横向$π/2 $ - 兴趣,以制备免受腔体超充值保护的宏观集体旋转。这要求将原子合奏的两个半部分耦合到相对相的腔模式,这是自然而然地实现的,对于沿腔轴的均匀覆盖奇数甚至腔模式的位点的同质填充体积。上等精度的起源可以追溯到复杂的非线性集体原子场动力学中子符号之间的破坏性干扰。在相同的配置中,我们发现腔输出的常规自动脉冲令人惊讶,以进行合适的连续照明。我们对使用累积扩张的大原子数的模拟通过对较小的合奏的全面处理来定性地确认。
Ramsey spectroscopy in large, dense ensembles of ultra-cold atoms trapped in optical lattices suffers from dipole-dipole interaction induced shifts and collective superradiance limiting its precision and accuracy. We propose a novel geometry implementing fast signal readout with minimal heating for large atom numbers at lower densities via an optical cavity operated in the weak single atom but strong collective coupling regime. The key idea is controlled collective transverse $π/2$-excitation of the atoms to prepare a macroscopic collective spin protected from cavity superradiance. This requires that the two halves of the atomic ensemble are coupled to the cavity mode with opposite phase, which is naturally realized for a homogeneously filled volume covering odd and even sites of the cavity mode along the cavity axis. The origin of the superior precision can be traced back to destructive interference among sub-ensembles in the complex nonlinear collective atom field dynamics. In the same configuration we find surprising regular self-pulsing of the cavity output for suitable continuous illumination. Our simulations for large atom numbers employing a cumulant expansion are qualitatively confirmed by a full quantum treatment of smaller ensembles.