论文标题

Evolution Gym:用于不断发展的软机器人的大规模基准

Evolution Gym: A Large-Scale Benchmark for Evolving Soft Robots

论文作者

Bhatia, Jagdeep Singh, Jackson, Holly, Tian, Yunsheng, Xu, Jie, Matusik, Wojciech

论文摘要

机器人的设计和控制在其任务性能中同样重要。但是,尽管在机器学习和机器人技术社区中对最佳控制进行了很​​好的研究,但人们对找到最佳机器人设计的关注更少。这主要是因为机器人技术中的合作设计和控制是一个具有挑战性的问题,更重要的是,不存在全面的评估基准。在本文中,我们提出了Evolution Gym,这是第一个大规模的基准,用于将软机器人的设计和控制能力达到优化。在我们的基准测试中,每个机器人由不同类型的体素(例如,柔软,刚性,执行器)组成,从而产生了模块化和表现力的机器人设计空间。我们的基准环境涵盖了广泛的任务,包括各种类型的地形和操纵上的运动。此外,我们通过结合最先进的设计优化方法和深度强化学习技术来开发几种机器人共同进化算法。评估我们的基准平台上的算法,我们观察到机器人随着进化的进展而表现出越来越复杂的行为,最佳进化设计解决了我们所提出的许多任务。此外,即使机器人设计在没有先验知识的情况下从划痕中自动发展,但它们通常会成长为类似于现有的天然生物,同时超过了手工设计的机器人。然而,所有经过测试的算法都无法在我们最艰难的环境中找到成功的机器人。这表明需要更高级的算法来探索高维设计空间并发展到越来越智能的机器人 - 我们希望进化健身房能够加速进步的研究领域。我们的网站具有代码,环境,文档和教程,请访问http://evogym.csail.mit.edu。

Both the design and control of a robot play equally important roles in its task performance. However, while optimal control is well studied in the machine learning and robotics community, less attention is placed on finding the optimal robot design. This is mainly because co-optimizing design and control in robotics is characterized as a challenging problem, and more importantly, a comprehensive evaluation benchmark for co-optimization does not exist. In this paper, we propose Evolution Gym, the first large-scale benchmark for co-optimizing the design and control of soft robots. In our benchmark, each robot is composed of different types of voxels (e.g., soft, rigid, actuators), resulting in a modular and expressive robot design space. Our benchmark environments span a wide range of tasks, including locomotion on various types of terrains and manipulation. Furthermore, we develop several robot co-evolution algorithms by combining state-of-the-art design optimization methods and deep reinforcement learning techniques. Evaluating the algorithms on our benchmark platform, we observe robots exhibiting increasingly complex behaviors as evolution progresses, with the best evolved designs solving many of our proposed tasks. Additionally, even though robot designs are evolved autonomously from scratch without prior knowledge, they often grow to resemble existing natural creatures while outperforming hand-designed robots. Nevertheless, all tested algorithms fail to find robots that succeed in our hardest environments. This suggests that more advanced algorithms are required to explore the high-dimensional design space and evolve increasingly intelligent robots -- an area of research in which we hope Evolution Gym will accelerate progress. Our website with code, environments, documentation, and tutorials is available at http://evogym.csail.mit.edu.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源