论文标题

神经歧管聚类和嵌入

Neural Manifold Clustering and Embedding

论文作者

Li, Zengyi, Chen, Yubei, LeCun, Yann, Sommer, Friedrich T.

论文摘要

给定非线性歧管的结合,非线性子空间聚类或歧管群集旨在基于歧管结构的群集数据点,并学会将每个歧管作为特征空间中的线性子空间参数化。深度神经网络有可能在高度非线性的环境下实现这一目标,鉴于它们的能力较大和灵活性。我们认为,通过神经网络实现多种聚类需要两种基本要素:一个特定的域特异性约束,可确保歧管的识别,以及将每个歧管嵌入到特征空间中的线性子空间中的学习算法。这项工作表明,可以通过数据扩展来实现许多约束。对于子空间功能学习,可以使用最大编码率(MCR $^2 $)目标。将它们放在一起产生{\ em神经歧管聚类和嵌入}(NMCE),这是一种通用歧管聚类的新方法,它大大胜过基于自动编码器的深层子空间群集。此外,在更具挑战性的自然图像数据集上,NMCE还可以胜过专门针对聚类的其他算法。从定性上讲,我们证明了NMCE学习一个有意义且可解释的特征空间。由于NMCE的表述与几种重要的自我监督学习(SSL)方法密切相关,因此我们认为这项工作可以帮助我们对SSL表示学习有更深入的了解。

Given a union of non-linear manifolds, non-linear subspace clustering or manifold clustering aims to cluster data points based on manifold structures and also learn to parameterize each manifold as a linear subspace in a feature space. Deep neural networks have the potential to achieve this goal under highly non-linear settings given their large capacity and flexibility. We argue that achieving manifold clustering with neural networks requires two essential ingredients: a domain-specific constraint that ensures the identification of the manifolds, and a learning algorithm for embedding each manifold to a linear subspace in the feature space. This work shows that many constraints can be implemented by data augmentation. For subspace feature learning, Maximum Coding Rate Reduction (MCR$^2$) objective can be used. Putting them together yields {\em Neural Manifold Clustering and Embedding} (NMCE), a novel method for general purpose manifold clustering, which significantly outperforms autoencoder-based deep subspace clustering. Further, on more challenging natural image datasets, NMCE can also outperform other algorithms specifically designed for clustering. Qualitatively, we demonstrate that NMCE learns a meaningful and interpretable feature space. As the formulation of NMCE is closely related to several important Self-supervised learning (SSL) methods, we believe this work can help us build a deeper understanding on SSL representation learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源