论文标题

仿射身体动力学:快速,稳定和无交叉的僵硬材料模拟

Affine Body Dynamics: Fast, Stable & Intersection-free Simulation of Stiff Materials

论文作者

Lan, Lei, Kaufman, Danny M., Li, Minchen, Jiang, Chenfanfu, Yang, Yin

论文摘要

在变形不显着或可以安全地忽略变形的应用中,模拟僵硬的材料是整个字段的关键任务。因此,刚体建模长期以来一直是一种基本工具,到目前为止,这是目前用于建模僵硬固体的最流行的仿真策略。同时,刚体的数值模型继续构成许多已知的挑战和权衡,包括交叉点,不稳定性,不准确性和/或随着接触问题的复杂性而增长的慢速性能。在本文中,我们重新审视了这个问题,并提出了ABD,这是一个简单而高效的仿射身体动力框架,可显着改善最新的僵硬模拟。我们将刚体IPC(增量电位接触)方法中的挑战追踪到线性化分段 - 刚性(SE(3))轨迹和随后的约束的必要性。相反,ABD放松了不必要的(不切实际)的约束,即每个身体的运动都具有刚性的刚性潜力,同时保留了刚体模型的小坐标表示的关键特征。这样做的ABD用分段线性轨迹代替了分段线性化。反过来,这又结合了双方的最佳:紧凑的坐标确保稀疏的系统求解,而分段线性轨迹可以有效,准确的约束(接触和关节)评估。从这个简单的基础开始,ABD保留了基本IPC模型的所有保证,例如解决方案收敛,保证的非交流和准确的摩擦接触。在众多模拟问题的范围和规模上,我们证明ABD带来了具有类似或更高仿真质量的基于IPC的方法,因此,ABD带来了数量级的性能提高(CPU上的两到三阶和更多利用GPU的订单)。

Simulating stiff materials in applications where deformations are either not significant or can safely be ignored is a pivotal task across fields. Rigid body modeling has thus long remained a fundamental tool and is, by far, the most popular simulation strategy currently employed for modeling stiff solids. At the same time, numerical models of a rigid body continue to pose a number of known challenges and trade-offs including intersections, instabilities, inaccuracies, and/or slow performances that grow with contact-problem complexity. In this paper we revisit this problem and present ABD, a simple and highly effective affine body dynamics framework, which significantly improves state-of-the-art stiff simulations. We trace the challenges in the rigid-body IPC (incremental potential contact) method to the necessity of linearizing piecewise-rigid (SE(3)) trajectories and subsequent constraints. ABD instead relaxes the unnecessary (and unrealistic) constraint that each body's motion be exactly rigid with a stiff orthogonality potential, while preserving the rigid body model's key feature of a small coordinate representation. In doing so ABD replaces piecewise linearization with piecewise linear trajectories. This, in turn, combines the best from both parties: compact coordinates ensure small, sparse system solves, while piecewise-linear trajectories enable efficient and accurate constraint (contact and joint) evaluations. Beginning with this simple foundation, ABD preserves all guarantees of the underlying IPC model e.g., solution convergence, guaranteed non-intersection, and accurate frictional contact. Over a wide range and scale of simulation problems we demonstrate that ABD brings orders of magnitude performance gains (two- to three-order on the CPU and an order more utilizing the GPU, which is 10,000x speedups) over prior IPC-based methods with a similar or higher simulation quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源