论文标题

分析性集成的零用弹簧弹簧用于捕获非准神经网络未代表的动态模式

Analytically Integratable Zero-restlength Springs for Capturing Dynamic Modes unrepresented by Quasistatic Neural Networks

论文作者

Jin, Yongxu, Han, Yushan, Geng, Zhenglin, Teran, Joseph, Fedkiw, Ronald

论文摘要

我们提出了一种新型范式,用于借助神经网络实时建模某些类型的动态模拟。为了显着降低数据的要求(尤其是时间依赖数据),并减少概括错误,我们的方法仅利用数据驱动的神经网络来捕获准危机信息(而不是动态或时间依赖的信息)。随后,我们使用(实时)动态仿真层增强了我们的准神经网络(QNN)推断。我们的关键见解是,使用QNN近似时丢失的动态模式可以通过非常简单(且脱钩的)零固定弹簧模型捕获,该模型可以通过分析(而不是数值)进行集成,因此没有时间步长稳定性限制。此外,我们证明可以从少量的动态模拟数据中鲁棒学的弹簧本构参数。尽管我们通过考虑在动画人体上的软组织动力学来说明方法的功效,但对于许多不同的模拟框架,范式可以扩展。

We present a novel paradigm for modeling certain types of dynamic simulation in real-time with the aid of neural networks. In order to significantly reduce the requirements on data (especially time-dependent data), as well as decrease generalization error, our approach utilizes a data-driven neural network only to capture quasistatic information (instead of dynamic or time-dependent information). Subsequently, we augment our quasistatic neural network (QNN) inference with a (real-time) dynamic simulation layer. Our key insight is that the dynamic modes lost when using a QNN approximation can be captured with a quite simple (and decoupled) zero-restlength spring model, which can be integrated analytically (as opposed to numerically) and thus has no time-step stability restrictions. Additionally, we demonstrate that the spring constitutive parameters can be robustly learned from a surprisingly small amount of dynamic simulation data. Although we illustrate the efficacy of our approach by considering soft-tissue dynamics on animated human bodies, the paradigm is extensible to many different simulation frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源