论文标题

BESOV和TRIEBEL-LIZORKIN空间在同质类型的空间上的特征表征

Pointwise Characterization of Besov and Triebel-Lizorkin Spaces on Spaces of Homogeneous Type

论文作者

Alvarado, Ryan, Wang, Fan, Yang, Dachun, Yuan, Wen

论文摘要

在本文中,作者通过澄清Hajłasz-Sobolev空间之间的关系,Hajłasz-Besov和Hajłasz-hajłasz--tiebel-lizorkin,Grand Besov and Triebel-lizorkin和triebine和triebine和beslie,在同质类型的空间上建立了BESOV和TRIEBEL-LIZORKIN空间的表征。本文的一个主要新颖性是,本文中介绍的所有结果都摆脱了对量度的反向加倍条件的依赖,也可以摆脱正在考虑的准中心的度量条件。此外,即使在基础空间是RD空间的情况下,不均匀版本的特定表征也是新的。

In this article, the authors establish the pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type via clarifying the relationship among Hajłasz-Sobolev spaces, Hajłasz-Besov and Hajłasz-Triebel-Lizorkin spaces, grand Besov and Triebel-Lizorkin spaces, and Besov and Triebel-Lizorkin spaces. A major novelty of this article is that all results presented in this article get rid of both the dependence on the reverse doubling condition of the measure and the metric condition of the quasi-metric under consideration. Moreover, the pointwise characterization of the inhomogeneous version is new even when the underlying space is an RD-space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源