论文标题
线性加速度对辐射的电子反应:经典,QED和加速框架预测
Electron response to radiation under linear acceleration: classical, QED and accelerated frame predictions
论文作者
论文摘要
经历常规的无限持续加速度的模型检测器会收敛到由鹰 - unruh温度$ t_a =(a/2π)(\ hbar/c)$描述的平衡状态。为了将这种预测与实验性可观察物相关联,将一个类似点的带电粒子(例如电子)代替模型检测器。电子的内部自由度不是探测器的内部自由度,而是横向向加速度的平面中的低摩孔波动提供了一定程度的自由度和可观察物,这些自由度与对称性兼容,并通过与辐射场相互作用进行热层化。加速框架中的一般参数表明热化和波动散落关系,但使波动或耗散的大小不确定。实验室框架分析再现了经典洛伦兹 - 阿布拉罕 - 迪拉克方程所描述的辐射损失,并揭示了经典的随机力。我们得出了辐射损失与随机力之间的波动 - 散落关系,以及均值$ \ langle p_ \ perp^2 \ rangle = 2mt_a $仅来自经典电动力学。该派生仅使用直接的统计定义来获得耗散和波动动力学。由于这些动力学变得重要是必要的,因此我们将放松和扩散时间的经典结果与强场量子电动力学结果进行比较。我们发现实验性实现将需要开发更精确的可观察物。即使是Wakefield加速器,它提供了实验室中最大的线性加速度,也将需要改进当前技术以及高统计数据以区分效果。
A model detector undergoing constant, infinite-duration acceleration converges to an equilibrium state described by the Hawking-Unruh temperature $T_a=(a/2π)(\hbar/c)$. To relate this prediction to experimental observables, a point-like charged particle, such as an electron, is considered in place of the model detector. Instead of the detector's internal degree of freedom, the electron's low-momentum fluctuations in the plane transverse to the acceleration provide a degree of freedom and observables which are compatible with the symmetry and thermalize by interaction with the radiation field. General arguments in the accelerated frame suggest thermalization and a fluctuation-dissipation relation but leave underdetermined the magnitude of either the fluctuation or the dissipation. Lab frame analysis reproduces the radiation losses, described by the classical Lorentz-Abraham-Dirac equation, and reveals a classical stochastic force. We derive the fluctuation-dissipation relation between the radiation losses and stochastic force as well as equipartitation $\langle p_\perp^2\rangle = 2mT_a$ from classical electrodynamics alone. The derivation uses only straightforward statistical definitions to obtain the dissipation and fluctuation dynamics. Since high accelerations are necessary for these dynamics to become important, we compare classical results for the relaxation and diffusion times to strong-field quantum electrodynamics results. We find that experimental realization will require development of more precise observables. Even wakefield accelerators, which offer the largest linear accelerations available in the lab, will require improvement over current technology as well as high statistics to distinguish an effect.