论文标题
在具有非局部匹配条件的星形图上的差分运算符的逆问题
Inverse problem for a differential operator on a star-shaped graph with nonlocal matching condition
论文作者
论文摘要
在本文中,我们开发了两种方法,用于研究新的非局部算子在度量图上的逆频谱问题。在具有非局部积分匹配条件的星形图上考虑了拉普拉斯差异操作员。该运算符在图形的中央顶点处的冻结参数与功能分化运算符的伴随。我们研究了从特征值恢复整体条件系数的逆问题。我们获得频谱表征,重建算法,并证明了反问题解决方案的独特性。
In this paper, we develop two approaches to investigation of inverse spectral problems for a new class of nonlocal operators on metric graphs. The Laplace differential operator is considered on a star-shaped graph with nonlocal integral matching condition. This operator is adjoint to the functional-differential operator with frozen argument at the central vertex of the graph. We study the inverse problem that consists in the recovery of the integral condition coefficients from the eigenvalues. We obtain the spectrum characterization, reconstruction algorithms, and prove the uniqueness of the inverse problem solution.