论文标题
在多体系统中生成对称性保护的远程纠缠
Generating Symmetry-Protected Long-Range Entanglement in Many-Body Systems
论文作者
论文摘要
空间远处的纠缠可能是分布式量子计算的最违反直觉,最重要的资源。但是,尽管有一些特殊情况,但尚无已知的一般程序来最大程度地纠缠一个相互作用的多体系统的两个遥远部分。在这里,我们提出了一种基于对称性的方法,通过该方法,人们使用几个定时脉冲将系统驱动到具有最大二分线长距离纠缠的特定对称扇区。作为一个具体的例子,我们演示了量子阵列上的简单现场脉冲序列如何有效地产生任何给定数量的稳定的非局部钟形对,这可以在当今的几个原子和光子实验平台中实现。更普遍地,我们的方法通过利用对称性来铺平了一条新型状态准备的途径。例如,我们展示它如何在令人反感的哈伯德模型中创建长期持久的超导$η$对。
Entanglement between spatially distant qubits is perhaps the most counterintuitive and vital resource for distributed quantum computing. However, despite a few special cases, there is no known general procedure to maximally entangle two distant parts of an interacting many-body system. Here we present a symmetry-based approach, whereby one applies several timed pulses to drive a system to a particular symmetry sector with maximal bipartite long-range entanglement. As a concrete example, we demonstrate how a simple sequence of on-site pulses on a qubit array can efficiently produce any given number of stable nonlocal Bell pairs, realizable in several present-day atomic and photonic experimental platforms. More generally, our approach paves a route for novel state preparation by harnessing symmetry. For instance, we show how it enables the creation of long-sought-after superconducting $η$ pairs in a repulsive Hubbard model.