论文标题

多路数据的贝叶斯协方差结构建模

Bayesian Covariance Structure Modeling of Multi-Way Nested Data

论文作者

Baas, Stef, Boucherie, Richard J., Fox, Jean-Paul

论文摘要

提出了具有用于多路嵌套数据的结构化协方差矩阵的贝叶斯多元模型。这个灵活的建模框架允许聚类观测值之间的正相关和负相关,并概括了随机效应所隐含的众所周知的依赖性结构。为了确保协方差矩阵在后验分析下保持正确定,提出了共轭转移的脉冲伽玛先验。为平衡的嵌套设计定义了数值高效的Gibbs采样程序,并使用两项模拟研究进行了验证。对于顶层不平衡的嵌套设计,该过程需要附加的数据增强步骤。提出的数据增强程序有助于从(截断)单变量正常分布中抽样潜在变量,并避免了结构化协方差矩阵倒数的数值计算。贝叶斯多元(线性转化)模型被应用于双向嵌套间隔审查的事件时间,以分析三组患者之间不良事件的差异,这些患者被随机分配给不同支架(生物度假)。结构化协方差矩阵的参数代表治疗效果中未观察到的异质性,并进行检查以检测差异治疗效果。

A Bayesian multivariate model with a structured covariance matrix for multi-way nested data is proposed. This flexible modeling framework allows for positive and for negative associations among clustered observations, and generalizes the well-known dependence structure implied by random effects. A conjugate shifted-inverse gamma prior is proposed for the covariance parameters which ensures that the covariance matrix remains positive definite under posterior analysis. A numerically efficient Gibbs sampling procedure is defined for balanced nested designs, and is validated using two simulation studies. For a top-layer unbalanced nested design, the procedure requires an additional data augmentation step. The proposed data augmentation procedure facilitates sampling latent variables from (truncated) univariate normal distributions, and avoids numerical computation of the inverse of the structured covariance matrix. The Bayesian multivariate (linear transformation) model is applied to two-way nested interval-censored event times to analyze differences in adverse events between three groups of patients, who were randomly allocated to treatment with different stents (BIO-RESORT). The parameters of the structured covariance matrix represent unobserved heterogeneity in treatment effects and are examined to detect differential treatment effects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源