论文标题
深度图像脱毛:调查
Deep Image Deblurring: A Survey
论文作者
论文摘要
图像DeBlurring是低级计算机视觉中的经典问题,目的是从模糊的输入图像中恢复锋利的图像。深度学习的进步导致了解决此问题的重大进展,并提出了大量的脱蓝色网络。本文对最近发表的基于深度学习的图像脱布方法进行了全面,及时的调查,旨在将社区作为有用的文献综述。我们首先讨论图像模糊的常见原因,引入基准数据集和性能指标,并总结不同的问题表述。接下来,我们根据建筑,损耗功能和应用使用卷积神经网络(CNN)介绍方法分类法,提供详细的审查和比较。此外,我们讨论了一些域特异性的脱张应用,包括面部图像,文本和立体声图像对。我们通过讨论关键挑战和未来的研究方向来结束。
Image deblurring is a classic problem in low-level computer vision with the aim to recover a sharp image from a blurred input image. Advances in deep learning have led to significant progress in solving this problem, and a large number of deblurring networks have been proposed. This paper presents a comprehensive and timely survey of recently published deep-learning based image deblurring approaches, aiming to serve the community as a useful literature review. We start by discussing common causes of image blur, introduce benchmark datasets and performance metrics, and summarize different problem formulations. Next, we present a taxonomy of methods using convolutional neural networks (CNN) based on architecture, loss function, and application, offering a detailed review and comparison. In addition, we discuss some domain-specific deblurring applications including face images, text, and stereo image pairs. We conclude by discussing key challenges and future research directions.